Highly crosslinked polyethylene for acetabular cups and cup inserts

LINK’s range of acetabular cups serves a wide variety of indications. LINK acetabular cups are frequently used both for young, active patients and for those who are older or undergoing revision surgery. Prosthetic heads with diameters of up to 36 mm can be used with X-LINKed® polyethylene acetabular cups to increase the range of movement and give optimal joint stability.

With X-LINKed® polyethylene, wear is greatly reduced. This extends the life of the other implant components.

The following components are available in X-LINKed® polyethylenes:

Uncemented
- T.O.P.® polyethylene inserts, standard and anti-luxation
- BetaCup® polyethylene inserts

Cemented
- Lubinus® polyethylene acetabular cups, eccentric, without snap-fit
- IP polyethylene acetabular cups
- FAL polyethylene acetabular cups, anti-luxation

Highly crosslinked polyethylene for acetabular cups and cup inserts

The following components are available in X-LINKed® polyethylenes:

Uncemented
- T.O.P.® polyethylene inserts, standard and anti-luxation
- BetaCup® polyethylene inserts

Cemented
- Lubinus® polyethylene acetabular cups, eccentric, without snap-fit
- IP polyethylene acetabular cups
- FAL polyethylene acetabular cups, anti-luxation

X-LINKed® UHMWPE

The new material from LINK®

Literature
- Greer, Richard, 47th Annual Meeting, Orthopaedic Research Society, Feb. 2001 San Fransisco USA: The properties of UHMWPE following annealing above the melting point

T.O.P.® polyethylene inserts, standard, anti-luxation
BetaCup® polyethylene inserts
Lubinus® polyethylene acetabular cups (without snap-fit)
FAL polyethylene acetabular cups
The new material from LINK®

X-LINK® is a highly crosslinked UHMWPE material combining maximum durability with optimised properties.

Looking back on decades of experience in using polyethylene, LINK has developed an extensive range of acetabular cup systems. Now, constantly striving to improve its products, LINK has developed a new UHMWPE material.

The development process paid particular attention to achieving maximal abrasion resistance and material strength with minimal oxidation and meets the latest findings in endoprosthetics and polymer science [1].

Introduction/Specifications

The new material from LINK®

X-LINK® is a highly crosslinked UHMWPE material combining maximum durability with optimised properties.

Looking back on decades of experience in using polyethylene, LINK has developed an extensive range of acetabular cup systems. Now, constantly striving to improve its products, LINK has developed a new UHMWPE material.

The development process paid particular attention to achieving maximal abrasion resistance and material strength with minimal oxidation and meets the latest findings in endoprosthetics and polymer science [1].

Minimal wear
Reduced polyethylene wear cuts down the risk of particle-induced osteolysis and thus helps to extend the functional life of endoprostheses. The share of highly crosslinked UHMWPE components that show reduced wear rates has increased within the last years. LINK’s standard material already possesses very low wear rates, still, the new material brings a 10fold improvement. The abrasion values attained by X-LINK® highly crosslinked UHMWPE are up to 90% lower than those of the established standard UHMWPE materials already on the market.

Wear rates of X-LINK® highly crosslinked UHMWPE: 2.03 mg/ Mio cycles

“Results for standard LINK UHMWPE and X-LINK® highly crosslinked UHMWPE (artificially aged) from Endolab report 2009/2010: mean of results for wear over 5 million cycles [2].”

Strength
Materials using highly crosslinked UHMWPE are often less strong than standard UHMWPE. In producing the X-LINK® material, special efforts have been made to maintain the mechanical properties as far as possible and the tendency of the material to become brittle has been minimised.

Tensile stress

<table>
<thead>
<tr>
<th>Depth [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>3000</td>
</tr>
<tr>
<td>4000</td>
</tr>
</tbody>
</table>

Fig. 1 Wear of X-LINK® highly crosslinked UHMWPE and LINK standard UHMWPE in comparison to products available on the market (source: Kurtz et al. [2] and Endolab final report 2000/2010 [2]).

No measurable oxidation
Oxidation of materials leads to aging processes which in turn impair the general properties of the material to deteriorate with UHMWPE components. This can result in increased brittleness and fracture. The risk of premature aging is greatly reduced in the case of X-LINK® highly crosslinked UHMWPE. An independent laboratory tested acetabular components for aging effects and found that almost no oxidation of the material took place.

Production of X-LINK® highly crosslinked UHMWPE

The new material is GUR 1020. It is injected at high pressure to form sheets which are then turned into rods.

The GUR 1020/UHMWPE rods are irradiated at 750Gy. A 5 mm layer is then shaved off the entire surface to remove the oxidised outer skin.

The highly crosslinked UHMWPE rods are refined in a special process.

All rods are packed in black airtight foil to protect them from oxidation during onward transport and storage.

Every stage of the production process has been fine-tuned to meet the particular needs of X-LINK®. For example, within the production facility the rods are transported in light-proof containers.

Products are sterilised with EO. This method is gentle to the material and ensures that products made from X-LINK® UHMWPE do not undergo physical changes during sterilisation.

Products are packed in light-proof airtight packaging. LINK has added an aluminium foil layer to the packaging to ensure complete protection.
The new material from Link®

X-LINKed® is a highly crosslinked UHMWPE material combining maximum durability with optimised properties.

Looking back on decades of experience in using polyethylene, Link has developed an extensive range of acetabular cup systems. Now, constantly aiming to improve its products, Link has developed a new UHMWPE material.

The development process paid particular attention to achieving minimal abrasion resistance and material strength with minimal oxidation and meets the latest findings in endoprosthetics and polymer science [1].

Minimal wear

Reduced polyethylene wear cuts down the risk of particle-induced osteolysis and thus helps to extend the functional life of endoprostheses. The share of highly crosslinked UHMWPE components that show reduced wear rates has increased within the last years.

Link’s standard material already possesses very low wear rates, but the new material brings a 10fold improvement. The abrasion values attained by X-LINKed® highly crosslinked UHMWPE are up to 90% lower than those of the established standard UHMWPE materials already on the market.

Wear rates of X-LINKed® highly crosslinked UHMWPE: 2.03 mg/ Mio cycles*

*Results for standard Link UHMWPE and X-LINKed® highly crosslinked UHMWPE (artificially aged from Endolab report 2009/2010) mean of results for wear over 5 million cycles [2]

Strength

Materials using highly crosslinked UHMWPE are often less strong than standard UHMWPE. In producing the X-LINKed® material, special efforts have been made to maintain the mechanical properties as far as possible and the tendency of the material to become brittle has been minimised.

Materials using highly crosslinked UHMWPE are up to 20% stronger than standard UHMWPE in comparison to products available on the market.

Tensile stress yield and tensile strength ultimate of X-LINKed® and standard materials [1], [2], [5], [6]

No measurable oxidation

Oxidation of materials leads to aging processes which in turn cause the general properties of the material to deteriorate with UHMWPE components. This can result in increased brittleness and fracture.

The risk of premature aging is greatly reduced in the case of X-LINKed® highly crosslinked UHMWPE. An independent laboratory tested acetabular components for aging effects and found that almost no oxidation of the material took place.

Production of X-LINKed® highly crosslinked UHMWPE

The raw material is GUR 1020. It is sintered at 75kGy. A 5 mm layer is then shaved off the entire surface to remove the oxidised outer skin.

Regional highly crosslinked UHMWPE

Fig. 1 Wear of X-LINKed® highly crosslinked UHMWPE and Link standard UHMWPE in comparison to products available on the market (source: Kurtz et. al [1] and Endolab final report 2009/2010).

Fig. 2 Tensile stress yield and tensile strength ultimate of X-LINKed® and standard materials [1], [2], [5], [6] and ASTM F648.

Fig. 3 Oxidation of X-LINKed® UHMWPE, measured by an independent laboratory [2].
The new material from LINK®

X-LINK® is a highly crosslinked UHMWPE material combining maximum durability with optimised properties.

Looking back on decades of experience in using polyethylene, LINK has developed an extensive range of acetabular cup systems. Now, constantly striving to improve its products, LINK has developed a new UHMWPE material.

The development process paid particular attention to achieving maximal abrasion resistance and material strength with minimal oxidation and meets the latest findings in endoprosthetics and polymer science [1].

Minimal wear

Reduced polyethylene wear cuts down the risk of particle-induced osteolysis and thus helps to extend the functional life of endoprostheses. The share of highly crosslinked UHMWPE components that show reduced wear rates has increased within the last years.

LINK’s standard material already possesses very low wear rates, until the new material brings a 10-fold improvement. The abrasion values attained by X-LINK® highly crosslinked UHMWPE are up to 90% lower than those of the established standard UHMWPE materials already on the market.

Wear rates of X-LINK® highly crosslinked UHMWPE: 2.03 mg/ Mio cycles*

“Results for standard LINK UHMWPE and X-LINK® highly crosslinked UHMWPE (artificially aged) from Endolab report (2009/2010) mean of results for wear over 5 million cycles [2].

Strength

Materials using highly crosslinked UHMWPE are often less strong than standard UHMWPE. In producing the X-LINK® material, special efforts have been made to maintain the mechanical properties as far as possible and the tendency of the material to become brittle has been minimised.

Materials using highly crosslinked UHMWPE are up to 20% stronger than standard UHMWPE in comparison to products available on the market (source: Kurtz et. al [1] and Endolab final report 2009/2010).

Materials using highly crosslinked UHMWPE are up to 20% stronger than standard UHMWPE in comparison to products available on the market.

tensile stress yield
tensile strength ultimate

The highly crosslinked UHMWPE rods are refined in a special process.

All rods are packed in black airtight foil to protect them from oxidation during onward transport and storage.

Every stage of the production process has been fine-tuned to meet the particular needs of X-LINK®. For example, within the production facility the rods are transported in light-proof containers.

Products are sterilised with EtO. This method is gentle to the material and ensures that products made from X-LINK® UHMWPE do not undergo physical changes during sterilisation.

Products are packed in light-proof airtight packaging. LINK has added an aluminium foil layer to the packaging to ensure complete protection.

No measurable oxidation

Oxidation of materials leads to aging processes which in turn cause the general properties of the material to deteriorate with UHMWPE components. This can result in increased brittleness and fractures.

The risk of premature aging is greatly reduced in the case of X-LINK® highly crosslinked UHMWPE. An independent laboratory tested acetabular components for aging effects and found that almost no oxidation of the material took place.

tensile strength yield
tensile strength ultimate

The raw material is GUR 1020. It is sintered at 75kGy. A 5 mm layer is then shaved off the entire surface to remove the oxidised outer skin.

All rods are packed in black airtight foil to protect them from oxidation during onward transport and storage.

Every stage of the production process has been fine-tuned to meet the particular needs of X-LINK®. For example, within the production facility the rods are transported in light-proof containers.

Products are sterilised with EtO. This method is gentle to the material and ensures that products made from X-LINK® UHMWPE do not undergo physical changes during sterilisation.

Products are packed in light-proof airtight packaging. LINK has added an aluminium foil layer to the packaging to ensure complete protection.

Materials using highly crosslinked UHMWPE are highly crosslinked UHMWPE that show reduced wear rates has increased within the last years.

The highly crosslinked UHMWPE rods are refined in a special process.

All rods are packed in black airtight foil to protect them from oxidation during onward transport and storage.

Every stage of the production process has been fine-tuned to meet the particular needs of X-LINK®. For example, within the production facility the rods are transported in light-proof containers.

Products are sterilised with EtO. This method is gentle to the material and ensures that products made from X-LINK® UHMWPE do not undergo physical changes during sterilisation.

Products are packed in light-proof airtight packaging. LINK has added an aluminium foil layer to the packaging to ensure complete protection.

Fig. 1 Wear of X-LINK® highly crosslinked UHMWPE and LINK standard UHMWPE in comparison to products available on the market (source: Kurtz et. al [1] and Endolab final report 2009/2010).

Fig. 2 Tensile stress yield and tensile strength ultimate of X-LINK® and standard materials [1], [2], [5], [6].

Fig. 3 Oxidation of X-LINK® UHMWPE, measured by an independent laboratory [2].
Highly crosslinked polyethylene for acetabular cups and cup inserts

LINK’s range of acetabular cups serves a wide variety of indications. LINK acetabular cups are frequently used both for young, active patients and for those who are older or undergoing revision surgery. Prosthesis heads with diameters of up to 36 mm can be used with X-LINKed® polyethylene acetabular cups to increase the range of movement and give optimal joint stability.

With X-LINKed® polyethylene, wear is greatly reduced. This extends the life of the other implant components.

The following components are available in X-LINKed® polyethylenes:

Uncemented
- T.O.P.® polyethylene inserts, standard and anti-luxation
- BetaCup® polyethylene inserts

Cemented
- Lubinus® polyethylene acetabular cups, eccentric, without snap-fit
- IPP polyethylene acetabular cups
- FAL polyethylene acetabular cups, anti-luxation
Highly crosslinked polyethylene for acetabular cups and cup inserts

LINK’s range of acetabular cups serves a wide variety of indications. LINK acetabular cups are frequently used both for young, active patients and for those who are older or undergoing revision surgery. Prosthetic heads with diameters of up to 36 mm can be used with X-LINKed® polyethylene acetabular cups to increase the range of movement and give optimal joint stability.

With X-LINKed® polyethylene, wear is greatly reduced. This extends the life of the other implant components.

The following components are available in X-LINKed® polyethylene:

Uncemented
- T.O.P.® polyethylene inserts, standard and anti-luxation
- BetaCup® polyethylene inserts

Cemented
- Lubinus® polyethylene acetabular cups, eccentric, without snap-fit
- IP polyethylene acetabular cups
- FAL polyethylene acetabular cups, anti-luxation

Literature

X-LINKed® UHMWPE

The new material from LINK®